William W. Wilkins Professional Building Columbus, Ohio

Introduction

Existing Structure

Floor System

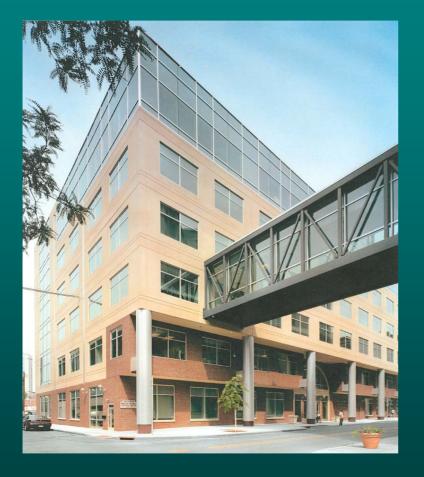
Lateral System

Proposal

Structural Redesign

Gravity

Lateral


Cost & Schedule

Photovoltaic's

Summary and Conclusions

Introduction

William W. Wilkins Building

- 6 story medical office building
- ~ 112,000 sq. ft.
- Occupant: Grant Riverside
- Façade:
 - brick veneer
 - precast concrete panels
 - spandrel glass

Introduction

Existing Structure

Floor System

Lateral System

Proposal

Structural Redesign

Gravity

Lateral

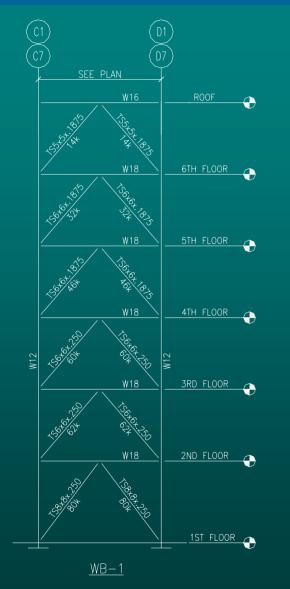

Cost & Schedule

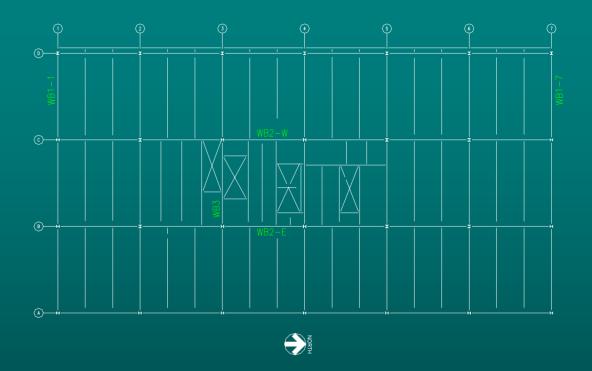
Photovoltaic's

Summary and Conclusions

Existing Structure - Floor System

William W. Wilkins Building


- 3.5" slab over 2" steel deck
- 6x6-W2.1xW2.1 WWF


Framing:

- W16x31 with 17 studs
- W24x55 with 35 studs

Existing Structure - Lateral System

William W. Wilkins Building

Steel Braces

- Columns W12x58 to W12x136
- Beams W18x40 or W24x68
- Braces HSS5x5x.1875 to HSS8x8x.25

Introduction

Existing Structure

Floor System

Lateral System

Proposal

Structural Redesign

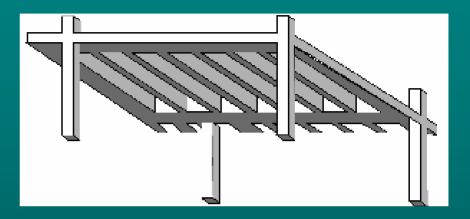
Gravity

Lateral

Cost & Schedule

Photovoltaic's

Summary and Conclusions


Proposal

William W. Wilkins Building

Floor System:

Skip-Joists

- Fast construction
- Easy formwork
- Comparable member depth
- Comparable cost
- Available work force

Proposal

Lateral System:

- Intermediate concrete moment frame
- Inherent properties of concrete

William W. Wilkins Building

Codes:

- IBC 2003
- ASCE 7-05
- ACI 318-05

Design Criteria:

• Cost

- Constructability
 - Ease of construction
 - Schedule
- Building Weight
- Architecture
 - Flexible floor plan
 - Windows

Introduction

Existing Structure

Floor System

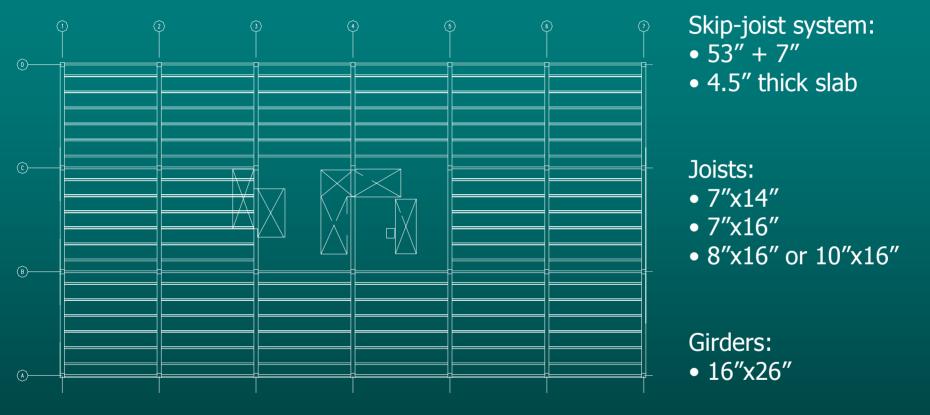
Lateral System

Proposal

Structural Redesign

Gravity

Lateral


Cost & Schedule

Photovoltaic's

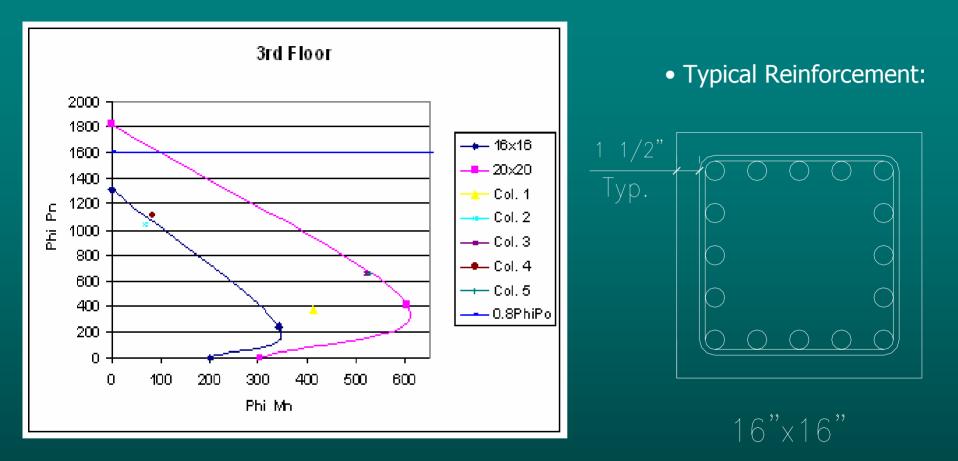
Summary and Conclusions

Structural Redesign - Gravity

• Typical Floor Layout

Structural Redesign - Gravity

- Flexural reinforcement:
 - #7, #8
 - #9, #10


• Spacing requirements for shear:

• S ≤ d/4 ≤ 8 øf ≤ 24 øs ≤ 12″

Shear Reinforcement					
	Size	# and spacing (in.), ends	Spacing for middle (in.)		
Floor Joist	# 3	(1) @ 2, (6) @ 4	9		
Roof Joist	# 3	(1) @ 2, (6) @ 4	9		
Ext. Floor Joist	# 3	(1) @ 2, (6) @ 4	9		
Floor Girder	# 4	(1) @ 2, (16) @ 5, (9) @ 9	11		
Roof Girder/ Ext. Floor Girder	# 4	(1) @ 2, (10) @ 5, (7) @ 8	11		
Ext. Roof Girder	# 4	(1) @ 2, (10) @ 5	11		

Structural Redesign - Gravity

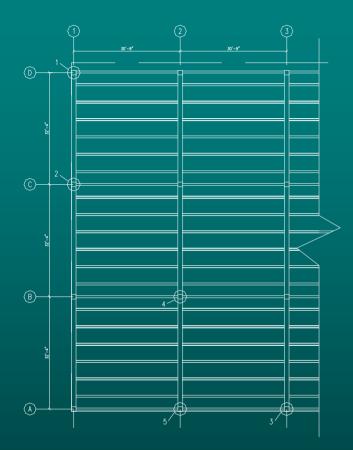
William W. Wilkins Building

• Column sizes range from 16x16 to 22x22

Structural Redesign - Lateral

Seismic Loads

Story	F _x (k)
2	9.53
3	20.29
4	31.70
5	43.66
6	56.16
R	53.07


- Wind controls East/West
- Seismic controls North/South

Wind Loads

P=qGCp - q _i (GCp _i)						
	Windward		Leev	vard	Total	
height	N-S	E-W	N-S	E-W	N-S	E-W
0-15'	6.83	6.83	-4.68	-7.04	11.51	13.87
20'	7.43	7.43	-4.68	-7.04	12.11	14.47
25'	7.91	7.91	-4.68	-7.04	12.59	14.95
30'	8.39	8.39	-4.68	-7.04	13.07	15.43
40'	9.11	9.11	-4.68	-7.04	13.78	16.15
50'	9.71	9.71	-4.68	-7.04	14.38	16.75
60'	10.19	10.19	-4.68	-7.04	14.86	17.23
70'	10.67	10.67	-4.68	-7.04	15.34	17.71
80'	11.15	11.15	-4.68	-7.04	15.82	18.19
84.67	11.27	11.27	-4.68	-7.04	15.94	18.31

Structural Redesign - Lateral

William W. Wilkins Building

• Available shear strength: 17.6^k • Controlling lateral distribution to columns:

5	5th Floor Columns 20x20				
	N/S (k)	E/W (k)			
W	1.83	3.86			
E	2.85	2.85			

Column Schedule						
	1	2	3	4	5	
6th Floor	16x16	16x16	16x16	16x16	16x16	
5th Floor	20x20	16x16	20x20	16x16	20x20	
4th Floor	20x20	16x16	20x20	16x16	20x20	
3rd Floor	20x20	20x20	20x20	20x20	20x20	
2nd Floor	22x22	22x22	22x22	22x22	22x22	
1st Floor	22x22	22x22	22x22	22x22	22x22	

Structural Redesign - Lateral

- Intermediate Reinforced Concrete Moment Frame requirements:
 - So ≤ b/2 ≤ 8 øv ≤ 24 øh ≤ 12"
 lo ≤ ln/6 ≤ b ≤ 18"
 - Transverse reinforcement requirements

Column Shear Reinforcement						
Size S_o I_o After I_o $d/2$ Spacing used (in)					Spacing used (in)	
16x16	# 3	8	16	16	6.75	6
20x20	# 3	9	18	18	8.75	8
22x22	# 3	9	18	18	9.75	9

Structural Redesign - Cost/Schedule

Existing System: Cost: - \$1.8 Million Schedule: **Cost Savings:** - 225 days ~ 45weeks - \$400,000 **Construction Duration:** New System: - 75 day increase Cost: - \$1.4 Million ~ 15 week increase - \$7/sq. ft. Schedule: - 300 days ~ 60weeks

Introduction

Existing Structure

Floor System

Lateral System

Proposal

Structural Redesign

Gravity

Lateral

Cost & Schedule

Photovoltaic's

Summary and Conclusions

Photovoltaic

William W. Wilkins Building

<u>Photovoltaic (PV)</u>: solar power technology that uses solar cells to convert energy from the sun into electricity.

- Have been used to power spacecrafts and satellites
- 4 GW of PV capacity worldwide

Façade vs. Roof

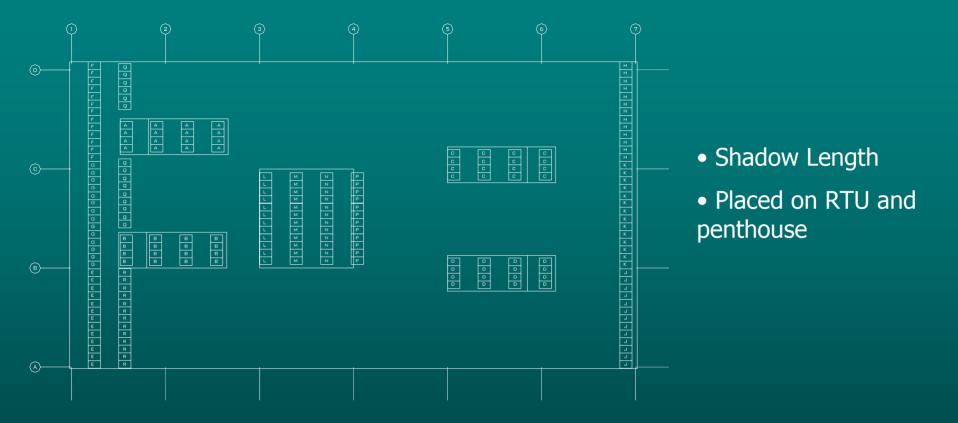
- Solar Wall PV/T
- SUNSLATES
- PV panels

Photovoltaic

William W. Wilkins Building

PV Panel:

- BP Solar model 4175
 - 175W
 - Monocrystalline cells
 - 72 cells in 6x12 matrix



Inverter:

- Sunny Boy Grid-tie Inverter
 - 208V single phase
 - 3500W
 - 16 inverters used

Photovoltaic

William W. Wilkins Building

- 220 panels
- Savings of \$7,300/year
- Prevent ~ 50tons of CO₂/year

Introduction

Existing Structure

Floor System

Lateral System

Proposal

Structural Redesign

Gravity

Lateral

Cost & Schedule

Photovoltaic's

Summary and Conclusions

Summary & Conclusions

	<u>Original Design</u>	<u>New Design</u>
Cost:	\$1.8 Million	\$1.4 Million
Schedule:	45 weeks	60 weeks
Ease of Construction:	Easy	Easy
Additional Fire Proofing Req'd?	Yes	No
Flexible Floor Plan?	Yes	Yes
Unobstructed Façade?	No	Yes
Available Labor?	Yes	Yes
Recommendation:	No	Yes

Summary & Conclusions

Justification

- ~ Available worker force
- ~ No lead time
 - more flexibility in design process
- ~ Foundations
 - less expensive to increase caisson diameter than switch from shallow
- \sim No bracing unobstructed view
- ~ No additional fireproofing required
- ~ Maintain flexible floor plan

Acknowledgements

William W. Wilkins Building

Architect and Main Engineer

CM/GC/Developer

Geotechnical Engineer

- AE professors and design professionals

- Family and friends

Questions?